About

Trey is SVP of Engineering @ Lucidworks, co-author of Solr in Action, founder or Celiaccess.com, researcher/ public speaker on search, analytics, recommendation systems, and natural language processing.

My team was fortunate to have 2 papers accepted for publication through the 2014 IEEE International Conference on Big Data, held last week in Washington, D.C. I presented one of the papers titled “Crowdsourced Query Augmentation through the Semantic Discovery of Domain-specific Jargon.” The slides and video (coming soon) are posted below for anyone who could not make the presentation in person.

Slides:

Paper Abstract: Most work in semantic search has thus far focused upon either manually building language-specific taxonomies/ontologies or upon automatic techniques such as clustering or dimensionality reduction to discover latent semantic links within the content that is being searched. The former is very labor intensive and is hard to maintain, while the latter is prone to noise and may be hard for a human to understand or to interact with directly. We believe that the links between similar user’s queries represent a largely untapped source for discovering latent semantic relationships between search terms. The proposed system is capable of mining user search logs to discover semantic
relationships between key phrases in a manner that is language agnostic, human understandable, and virtually noise-free.

Published in the 2014 IEEE International Conference on Big Data (IEEE BigData 2014)

Paper:

Comments are closed.